Главная » Новости » Невероятное в науке » Как нейросети узнают по скроллу и кликам менталитет человека
Как нейросети узнают по скроллу и кликам менталитет человека811 11 душка 15.04.2021 | |
Эффект, с которым сталкивались уже все: стоит один раз что-то поискать в интернете, как реклама этого товара будет у вас на каждом сайте. И хотя основная цель таких механизмов — заставить человека приобрести что-либо, в основном это раздражает. За кулисами такой преследующей рекламы работают нейросети, Big Data и встроенные пиксели, которые следят за тем, как ведет себя пользователь, даже ничего не нажимая. Сегодня такие системы уже умеют не только предлагать товары, они с точностью определяют национальность или менталитет (или какие-либо взгляды) пользователя и способны предложить зашедшему на сайт мексиканцу спецпредложения к Дню Святой Сесилии, а противнику производства меховых изделий — вещи, выполненные исключительно из синтетических материалов. О том, как умные машины оценивают менталитет человека за доли секунды, рассказал создатель технологии бесконтактной оплаты B-pay, CEO Briskly Глеб Харитонов.
Как предсказать, что человек захочет через пять лет Использование нейросетей — один из способов изменить взаимодействие с людьми через улучшение персонализации, а значит, увеличить прибыль. Особенно если компания работает на многотысячную аудиторию. Искусственный интеллект максимально детально анализирует поведение человека на сайте или в приложении, мгновенно составляет его портрет и позволяет подготовить индивидуальные предложения или рассчитать, как эффективнее составить рекламную кампанию. Yandex Data Factory (YDF) предложил алгоритмы, которые предсказывают влияние сформированных промоакций на объем продаж конкретных товаров. Идеей уже воспользовались в X5 Retail Group. Точность прогнозов близится к 90%. Для анализа используются история продаж, тип магазина, его ассортимент. Подобными механизмами пользуется и американский ритейлер Macy’s. Каждое взаимодействие пользователя с сайтом обновляет массив данных о человеке, и машинные алгоритмы быстрее реагируют на свежую информацию, чем живые сотрудники. Nike на идее персонализации выстроил целые новые магазины Nike Live, с которыми покупатель взаимодействует только при наличии установленного приложения — это помогает ему стать частью комьюнити и получать максимально индивидуальные предложения, а также ежемесячные подарки от бренда. Благодаря персонализации Nike в 40 раз увеличил вероятность покупки его товаров. Предсказывать нейросети способны не только эффект от промоакций. На сайтах интернет-магазинов они анализируют предыдущие покупки человека и делают вывод, например, что приобретенный месяц назад сахар должен закончиться в ближайшие дни. Значит, самое время предложить человеку обновить его запасы. Разработка чат-ботов — еще одно применение нейросетей. Виртуальные помощники отменяют необходимость большого штата колл-центра, при этом работают довольно эффективно. Они выдают более подробную информацию с большей скоростью, чем живой человек, и отвечают на любой вопрос о товаре или услуге — вплоть до ближайшего адреса торговой точки. В интернет-магазинах нейросети способны создавать персональные рекомендации не только на основании того, что человек просмотрел недавно, но и с учетом его портрета (пол, возраст, национальность и другие параметры). Аналитики прогнозируют взрывной рост инвестиций в проекты, связанные с ИИ, после пандемии. Среди ИТ-стартапов появляется все больше проектов, базирующихся на искусственном интеллекте и ML, потому что есть спрос. Ритейл все активнее использует ИИ: для подбора ассортимента в магазины, разработки промоакций, прогнозирования цен и спроса на товары. Появляются полноценные сторы, работающие на нейросетях — Amazon Go, Pro Market в «Сколково». Анализ Big Data и их переработка нейросетями позволяют, например, увидеть, что пользователи, делающие твиты с тегом #кроссовки, также часто прикрепляют теги #ASICS или #Nike. Это сигнализирует ритейлеру, какие товары чаще включать в рекламные кампании.
В 2016 году Amazon предоставил доступ к исходному коду своего алгоритма умных рекомендаций, а также предложил другим игрокам интегрировать к себе эти механизмы. В свежем отчете Палаты представителей США Amazon получила обвинение в монополии (в сегменте e-commerce) и в использовании данных конкурирующих продавцов в собственных интересах. А по заявлению Wall Street Journal, сотрудники Amazon анализируют данные о сторонних продажах для работы над своими продуктами под маркой Amazon. Имя, телефон или электронную почту человек может оставить самостоятельно, но другие данные, зачастую даже более важные для бизнеса, собираются автоматически. В этом помогают специальные коды, встраиваемые в интернет-страницу. Самый популярный вариант — пиксель: скрипт (фрагмент кода JavaScript), загружающий на страницу невидимое изображение. Оно передает собранную информацию на сервер, где та обрабатывается, анализируется и используется для формирования персональных предложений зашедшему на сайт человеку. Маркетологи активно используют пиксели от Facebook и Google. Большой плюс таких кодов в том, что чем больше разных компаний их применяют, тем шире становится база и эффективнее — анализ полученных данных. И чем чаще пользователь заходит на сайт, тем активнее увеличивается база его ID (персональная папка с информацией).
Пиксель собирает не только статичную информацию (например, IP, который позволяет понять местоположение пользователя), но и динамичную — действия человека на сайте. Условно, если он просмотрит в каталоге интернет-магазина две рубашки, нейросеть может предложить ему ознакомиться с другими похожими моделями или подобрать детали для полного ансамбля: брюки, жакет, аксессуары. В зависимости от того, как именно внедряется пиксель в код страницы, определяется момент сбора информации. Его можно настроить на определение целевых действий, не связанных с перезагрузкой сайта и сменой страницы — например, пользователь ставит лайк на товар или отмечает звездочкой, чтобы поместить в вишлист. Также пиксель настраивается на анализ информации о перезагрузке страниц: это позволяет анализировать, куда именно человек заходит. Третий вариант — внедрить пиксель на переходы по ссылкам, включая партнерские. За счет этого можно отслеживать сторонние интересы человека. Например, на сайте люстр он видит предложение новой коллекции керамогранита от партнера и переходит туда.
Технологии работают не только прямолинейно: если человек активно изучает детские коляски на разных сайтах, нейросеть покажет ему предложение от центра репродуктивной медицины или производителя детских кроваток. Потому что алгоритмы уже посчитали этого человека родителем и готовы подать сразу несколько актуальных предложений. Компании активно закупают данные о типичных паттернах (шаблонах) поведения различных категорий клиентов, могут обмениваться пикселями с партнерами и многократно увеличивать базу. Если рассматривать Facebook Pixel, то дополнительную информацию сообщает и аккаунт человека в Facebook, произошедшие в нем изменения (развелся, сменил работу и другое), совершенные с него действия — вплоть до остановки внимания на рекламном объявлении (даже если не кликать по нему). Пиксель работает в связке с cookies: это файлы с данными, которые находятся на устройстве пользователя и являются информационным источником для маркетологов. Это логин в социальных сетях, выбранные в корзину товары для интернет-магазинов, поисковые запросы и многое другое. Сбор этих данных нужен не только маркетологам: он упрощает жизнь и самим пользователям. Например, человек авторизировался в Facebook и ходит по разным страницам. Ему не нужно при каждой перезагрузке вводить логин и пароль заново — за него это сделал сайт, сохранивший cookies. То, что браузер запомнил геопозицию и не пытается на каждой странице предложить то Дубай, то Марокко, тоже заслуга cookies. Правда, собирая такие данные, важно не забывать о существовании ФЗ-152: сегодня каждый сайт, использующий cookies, обязан уведомить об этом заходящего пользователя и предоставить ему выбор — давать доступ к данным или нет. Можно также сделать передачу cookies настраиваемой: человек определяет объем информации, которую готов раскрыть сайту. При этом пользователь должен иметь возможность ознакомиться с Политикой конфиденциальности, знать срок хранения собранных данных, возможные действия с ними, цель сбора сведений и другие нюансы.
Как далеко зашли рекомендательные сервисы, можно видеть на примере виртуального помощника, созданного Macy’s совместно с платформой Watson Marketing. Нейросети отслеживают историю покупок посетителя на сайте или в приложении, анализируют его геопозицию, а также поведение похожих клиентов. После этого виртуальный помощник предлагает товары, подходящие человеку не только на основании его предыдущих приобретений (условно пятые белые кроссовки), но и с учетом его менталитета и других национальных особенностей. Например, убежденный защитник животных в рекомендациях точно не получит ни шубу из натурального меха, ни сумку из телячьей кожи. Amazon также занялся разработкой еще одного рекомендательного сервиса на основе нейросетей: теперь умные алгоритмы анализируют, каким товарам пользователь сайта поставил лайк, и предлагают актуальные для него товары. Причем советы могут выдаваться уже при первом посещении магазина: достаточно из предложенных вариантов выбрать понравившиеся (похожим образом работают рандомные подборки дня в Pinterest). Нейросеть обработает данные и выдаст актуальные предложения. Идея призвана решить вопрос «не знаю, что хочу» у посетителей сайта. По мнению представителей Amazon, это шаг к инновационному шопингу: возможность получать только полезные рекомендации, не просмотрев перед этим миллион товаров. Инструмент работает не только на сайте, но и в мобильном приложении. Помимо этого, в Amazon стали обучать нейросеть изучать стратегии поведения покупателя, учитывая длину поискового запроса, цену покупки и связь между уже приобретенными (помещенными в корзину) товарами. Предполагается, что люди, которые вбивают слишком длинные или чересчур короткие запросы, более гибкие в вопросе выбора и их легче заинтересовать чем-то, что они изначально не планировали покупать. Впрочем, рекомендательные системы на основе нейросетей есть не только в ритейле: подобный продукт разработан и у стримингового сервиса Netflix. Система учитывает стандартные критерии вроде истории просмотра, оценок, любимых актеров и жанров, а также времени суток входа в сервис, используемых для этого устройств, предпочтений других пользователей со схожим «профилем». Интересно, что персонализация доходит даже до выбора обложки под конкретного пользователя сервиса: раньше зрителю показывалась та, которую чаще просматривали. А теперь каждый человек видит подобранное под него изображение. С учетом скорости развития нейросетей, также увеличившейся из-за пандемии, инструменты, которые позволяют компаниям достичь еще большей персонализации, будут пользоваться все большим спросом, а значит — и трансформироваться. С высокой вероятностью на первом плане окажутся предсказательные механизмы, которые работают эффективнее любого человека. И если сегодня убежденному последователю Гринписа магазин уже не предлагает норковую шубу, то не исключено, что завтра машина почувствует намерение человека войти в число зоозащитников еще до того, как у него в голове это решение оформится.
ИСТОЧНИК: https://hightech.fm | |
|
Все статьи и видео представлены для ознакомления, анализа и обсуждения. Мнение администрации сайта и Ваше мнение может частично или полностью не совпадать с мнениями авторов публикаций.
ЧИТАЙТЕ ТАКЖЕ:
КОММЕНТАРИИ:
| |
ПОПУЛЯРНОЕ: